SPI协议
一、SPI接口
SPI是串行外设接口(Serial Peripheral Interface)的缩写,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,越来越多的芯片集成了这种通信协议。
SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是MISO(主设备数据输入)、MOSI(主设备数据输出)、SCLK(时钟)、CS(片选)。
SPI接口主要应用在EEPROM、FLASH、实时时钟、网络控制器、OLED显示驱动器、AD转换器,数字信号处理器、数字信号解码器等设备之间。
物理层:
(1)MISO– Master Input Slave Output,主设备数据输入,从设备数据输出;
(2)MOSI– Master Output Slave Input,主设备数据输出,从设备数据输入;
(3)SCLK – Serial Clock,时钟信号,由主设备产生;
(4)CS – Chip Select,从设备使能信号,由主设备控制。
从以上两张图可看出,数据引脚是有两个名字的,主机的MOSI可称为SDO,从机的MOSI称为SDI;主机的MISO可称为SDI,
其中,CS是从芯片是否被主芯片选中的控制信号,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),主芯片对此从芯片的操作才有效。这就使在同一条总线上连接多个SPI设备成为可能。
余下的3根线就负责通讯。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCLK时钟线存在的原因,由SCLK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。因此,至少需要8次时钟信号的改变(上沿和下沿为一次),才能完成8位数据的传输。
时钟信号线SCLK只能由主设备控制,从设备不能控制。同样,在一个基于SPI的设备中,至少有一个主设备。这样的传输方式有一个优点,在数据位的传输过程中可以暂停,也就是时钟的周期可以为不等宽,因为时钟线由主设备控制,当没有时钟跳变时,从设备不采集或传送数据。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。芯片集成的SPI串行同步时钟极性和相位可以通过寄存器配置,IO模拟的SPI串行同步时钟需要根据从设备支持的时钟极性和相位来通讯。
最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。
SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。
作为事实协议,SPI并没有严格意义上的电平标准,需要根据所用的芯片所提供的datasheet或者application note来设计电平,业界常规一般是3.3V或者1.8V,1.2V的接口还不太常见。
有的芯片有3.3V电压,有的是5V电压。而两个芯片之间用SPI通信,必须电压一致
SPI的三种方式
标准SPI
标准SPI通常就称SPI,它是一种串行外设接口规范,有4根引脚信号:clk , cs, mosi, miso
Dual SPI
它只是针对SPI Flash而言,不是针对所有SPI外设。对于SPI Flash,全双工并不常用,因此扩展了mosi和miso的用法,让它们工作在半双工,用以加倍数据传输。也就是对于Dual SPI Flash,可以发送一个命令字节进入dual mode,这样mosi变成SIO0(serial io 0),mosi变成SIO1(serial io 1),这样一个时钟周期内就能传输2个bit数据,加倍了数据传输
Qual SPI
与Dual SPI类似,也是针对SPI Flash,Qual SPI Flash增加了两根I/O线(SIO2,SIO3),目的是一个时钟内传输4个bit
所以对于SPI Flash,有标准spi flash,dual spi , qual spi 三种类型,分别对应3-wire, 4-wire, 6-wire,在相同clock下,线数越多,传输速率越高。
btw:spi flash一般为NOR Flash
总结一下接口
Standard SPI: CLK, /CS, DI, DO, /WP, /Hold
Dual SPI: CLK, /CS, IO0, IO1, /WP, /Hold
Quad SPI: CLK, /CS, IO0, IO1, IO2, IO3
链路层:
时序图:
SPI时序图详解---SPI接口在模式0下输出第一位数据的时刻。
SPI接口有四种不同的数据传输时序,取决于CPOL和CPHA这两位的组合。图中表现了这四种时序,时序与CPOL、CPHA的关系也可以从图中看出。
CPOL是用来决定SCK时钟信号空闲时的电平,CPOL=0,空闲电平为低电平,CPOL=1时,空闲电平为高电平。CPHA是用来决定采样时刻的,CPHA=0,在每个周期的第一个时钟沿采样,CPHA=1,在每个周期的第二个时钟沿采样 [2] 。
接下来详细的介绍这四种时序:
SPI是全双工接口,主机和从机可以分别通过MOSI和MISO线路同时发送数据。在SPI通信期间,数据的发送(串行移出到MOSI/SDO总线上)和接收(采样或读入总线(MISO/SDI)上的数据)同时进行。串行时钟沿同步数据的移位和采样。
下面4图显示了四种SPI模式下的通信示例。在这些示例中,数据显示在MOSI和MISO线上。传输的开始和结束用绿色虚线表示,采样边沿用橙色虚线表示,移位边沿用蓝色虚线表示。请注意,这些图形仅供参考。要成功进行SPI通信,用户须参阅产品数据手册并确保满足器件的时序规格。
SPI模式0,CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出
下图给出了SPI模式1的时序图。在此模式下,时钟极性为0,表示时钟信号的空闲状态为低电平。此模式下的时钟相位为1,表示数据在下降沿采样(由橙色虚线显示),并且数据在时钟信号的上升沿移出(由蓝色虚线显示)。
SPI模式1,CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出
下图给出了SPI模式2的时序图。在此模式下,时钟极性为1,表示时钟信号的空闲状态为高电平。此模式下的时钟相位为1,表示数据在下降沿采样(由橙色虚线显示),并且数据在时钟信号的上升沿移出(由蓝色虚线显示)。
SPI模式2,CPOL = 1,CPHA = 1:CLK空闲状态 = 高电平,数据在下降沿采样,并在上升沿移出
下图给出了SPI模式3的时序图。在此模式下,时钟极性为1,表示时钟信号的空闲状态为高电平。此模式下的时钟相位为0,表示数据在上升沿采样(由橙色虚线显示),并且数据在时钟信号的下降沿移出(由蓝色虚线显示)。
SPI模式3,CPOL = 1,CPHA = 0:CLK空闲状态 = 高电平,数据在上升沿采样,并在下降沿移出
多从机配置
多个从机可与单个SPI主机一起使用。从机可以采用常规模式连接,或采用菊花链模式连接。
常规SPI模式
在常规模式下,主机需要为每个从机提供单独的片选信号。一旦主机使能(拉低)片选信号,MOSI/MISO线上的时钟和数据便可用于所选的从机。如果使能多个片选信号,则MISO线上的数据会被破坏,因为主机无法识别哪个从机正在传输数据。
从下图可以看出,随着从机数量的增加,来自主机的片选线的数量也增加。这会快速增加主机需要提供的输入和输出数量,并限制可以使用的从机数量。可以使用其他技术来增加常规模式下的从机数量,例如使用多路复用器产生片选信号。
菊花链模式
在菊花链模式下,所有从机的片选信号连接在一起,数据从一个从机传播到下一个从机。在此配置中,所有从机同时接收同一SPI时钟。来自主机的数据直接送到第一个从机,该从机将数据提供给下一个从机,依此类推。
使用该方法时,由于数据是从一个从机传播到下一个从机,所以传输数据所需的时钟周期数与菊花链中的从机位置成比例。例如在图7所示的8位系统中,为使第3个从机能够获得数据,需要24个时钟脉冲,而常规SPI模式下只需8个时钟脉冲。
数据交换:
在SCK时钟周期的驱动下,MOSI和MISO同时进行,如图所示,可以看作一个虚拟的环形拓扑结构。
虚拟环形拓扑结构
主机和从机都有一个移位寄存器也是串行移位寄存器,主机移位寄存器数据经过MOSI将数据写入从机的移位寄存器,此时从机的串行移位寄存器的数据也通过MISO传给了主机,实现了两个移位寄存器的数据交换。无论主机还是从机, 发送和接收都是同时进行的,如同一个“环”。 如果主机只对从机进行写操作,主机只需忽略接收的从机数据即可。如果主机要读取从机数据,需要主机发送一个空数据来引发从机发送数据。
LSBFIRST帧格式 0:先发送MSB; 意思为先发送高字节 1:先发送LSB。 意思为先发送低字节
SPE:SPI使能 (SPI enable) 位6 0:禁止SPI设备; 1:开启SPI设备。
应用举例:
ADI 支持 SPI 的模拟开关与多路转换器
ADI公司最新一代支持SPI的开关可在不影响精密开关性能的情况下显著节省空间。本文的这一部分将讨论一个案例研究,说明支持SPI的开关或多路复用器如何能够大大简化系统级设计并减少所需的GPIO数量。
ADG1412是一款四通道、单刀单掷(SPST)开关,需要四个GPIO连接到每个开关的控制输入。图9显示了微控制器和一个ADG1412之间的连接。
随着电路板上开关数量的增加,所需GPIO的数量也会显著增加。例如,当设计一个测试仪器系统时,会使用大量开关来增加系统中的通道数。在4×4交叉点矩阵配置中,使用四个ADG1412。此系统需要16个GPIO,限制了标准微控制器中的可用GPIO。图10显示了使用微控制器的16个GPIO连接四个ADG1412。
如何减少 GPIO 数量?
一种方法是使用串行转并行转换器,如图11所示。该器件输出的并行信号可连接到开关控制输入,器件可通过串行接口SPI配置。此方法的缺点是外加器件会导致物料清单增加。
另一种方法是使用SPI控制的开关。此方法的优点是可减少所需GPIO的数量,并且还能消除外加串行转并行转换器的开销。如图12所示,不需要16个微控制器GPIO,只需要7个微控制器GPIO就可以向4个ADGS1412提供SPI信号。开关可采用菊花链配置,以进一步优化GPIO数量。在菊花链配置中,无论系统使用多少开关,都只使用主机(微控制器)的四个GPIO。
下图用于说明目的。ADGS1412数据手册建议在SDO引脚上使用一个上拉电阻。为简单起见,此示例使用了四个开关。随着系统中开关数量的增加,电路板简单和节省空间的优点很重要。